Tugas Sekolahan Kimia

Gas Mulia dalam Kimia

Gas Mulia

1. Gas Mulia Di Alam
Gas mulia adalah gas yang mempunyai sifat lengai, tidak reaktif, dan susah bereaksi dengan bahan kimia lain. Gas mulia banyak digunakan dalam sektor perindustrian.

Semua unsur gas mulia terdapat di udara, kecuali radon yang merupakan unsur radioaktif. Unsur gas mulia yang paling banyak terdapat di udara adalah argon.

Gas mulia diperoleh dari udara dengan cara destilasi udara cair. Gas mulia yang paling banyak terdapat di alam adalah helium. Helium diperoleh dari sumur-sumur gas alam di Texas dan Kansas (Amerika Serikat).
Unsur radon (Rn) yang merupakan unsur radioaktif Radium (Ra) dengan memancarkan sinar alfa (helium) sesuai dengan persamaan reaksi:

88Ra226 → 86Rn222 + 2He4

2. Penemuan Unsur Gas Mulia
Pada tahun 1894, seorang ahli kimia Inggris bernama William Ramsay mengidentifikasi zat baru yang terdapat dalam udara. Sampel udara yang sudah diketahui mengandung nitrogen, oksigen, dan karbon dioksida dipisahkan. Ternyata dari hasil pemisahan tersebut, masih tersisa suatu gas yang tidak reaktif (inert). Gas tersebut tidak dapat bereaksi dengan zat-zat lain sehingga dinamakan argon (dari bahasa Yunani argos yang berarti malas). Empat tahun kemudian Ramsay menemukan unsur baru lagi, yaitu dari hasil pemanasan mineral kleverit. Dari mineral tersebut terpancar sinar alfa yang merupakan spektrum gas baru. Spektrum gas tersebut serupa dengan garis-garis tertentu dalam spektrum matahari.

Untuk itu, diberi nama helium (dari bahasa Yunani helios berarti matahari). Pada saat ditemukan, kedua unsur ini tidak dapat dikelompokkan ke dalam golongan unsur-unsur yang sudah oleh Mendeleyev karena memiliki sifat berbeda. Kemudian Ramsey mengusulkan agar unsur tersebut ditempatkan pada suatu golongan tersendiri, yaitu terletak antara golongan halogen dan golongan alkali. Untuk melengkapi unsur-unsur dalam golongan tersebut, Ramsey terus melakukan penelitian dan akhirnya menemukan lagi unsur-unsur lainnya, yaitu neon, kripton, dan xenon (dari hasil destilasi udara cair). Kemudian unsur yang ditemukan lagi adalah radon yang bersifat radioaktif. Pada masa itu, golongan tersebut merupakan kelompok unsur-unsur yang tidak bereaksi dengan unsur-unsur lain (inert) dan dibri nama golongan unsur gas mulia atau golongan nol.

3. Sifat-Sifat Unsur Gas Mulia
Dengan konfigurasi elektron yang sudah penuh, gas mulia termasuk unsur yang stabil, artinya sukar bereaksi dengan unsur lain, sukar untuk menerima elektron maupun untuk melepas elektron.

a. Afinitas Elektron
Dengan elektron valensi yang sudah penuh, unsur gas mulia sangat sukar untuk menerima elektron. Hal ini dapat dilihat dari harga afinitas elektron yang rendah.


b. Energi Ionisasi
Kestabilan unsur-unsur golongan gas mulia menyebabkan unsur-unsur gas mulia sukar membentuk ion, artinya sukar untuk melepas elektron. Perhatikanlah data energi ionisasinya yang besar sehingga untuk dapat melepas sebuah elektron (untuk dapat membentuk ion) diperlukan energi yang besar. Helium adalah unsur gas mulia yang memiliki energi ionisasi paling besar.

c. Jari-Jari Atom
Jari-jari atom unsur-unsur golongan gas mulia sangat kecil (dalam satu golongan, semakin keatas semakin kecil) sehingga elektron terluar relatif lebih tertarik ke inti atom. Oleh sebab itu, atom-atom gas mulia sangat sukar untuk bereaksi.

d. Wujud Gas Mulia
Titik didih dan titik leleh unsur-unsur gas mulia lebih kecil dari pada suhu kamar (250C atau 298 K) sehinga seluruh unsur gas mulia berwujud gas. Karena kestabilan unsur-unsur gas mulia, maka di alam berada dalam bentuk monoatomik.

4. Pembentukan Senyawa Gas Mulia
Sampai dengan tahun 1962, para ahli masih yakin bahwa unsur-unsur gas mulia tidak bereaksi. Kemudian seorang ahli kimia kanada bernama Neil Bartlet berhasil membuat persenyawaan yang stabil antara unsur gas mulia dan unsur lain, yaitu XePtF6.

Keberhasilan ini didasarkan pada reaksi:
PtF6 + O2 → (O2)+ (PtF6)-

PtF6 ini bersifat oksidator kuat. Molekul oksigen memiliki harga energi ionisasi 1165 kJ/mol, harga energi ionisasi ini mendekati harga energi ionisasi unsur gas mulia Xe = 1170 kJ/mol.
Atas dasar data tersebut, maka untuk pertama kalinya Bartlet mencoba mereaksikan Xe dengan PtF6 dan ternyata menghasilkan senyawa yang stabil sesuai dengan persamaan reaksi:

Xe + PtF6 → Xe+(PtF6)-

Setelah berhasil membentuk senyawa XePtF6, maka gugurlah anggapan bahwa gas mulia tidak dapat bereaksi. Kemudian para ahli lainnya mencoba melakukan penelitian dengan mereaksikan xenon dengan zat-zat oksidator kuat, diantaranya langsung dengan gas flourin dan menghasilkan senyawa XeF2, XeF4, dan XeF6. Reaksi gas mulia lainnya, yaitu krypton menghasilkan senyawa KrF2. Radon dapat bereaksi langsung dengan F2 dan menghasilkan RnF2. Hanya saja senyawa KrF2 dan RnF2 bersifat (tidak stabil).
Senyawa gas mulia He, Ne, dan Ar sampai saat ini belum dapat dibuat mungkin karena tingkat kestabilannya yang sangat besar.


5. Pembuatan Gas Mulia

a. Gas Helium
Helium (He) ditemukan terdapat dalam gas alam di Amerika Serikat. Gas helium mempunyai titik didih yang sangat rendah, yaitu -268,8 0C sehingga pemisahan gas helium dari gas alam dilakukan dengan cara pendinginan sampai gas alam akan mencair (sekitar -156 0C) dan gas helium terpisah dari gas alam.

b. Gas Argon, Neon, Kripton, dan Xenon
Udara mengandung gas mulia argon (Ar), neon (Ne), krypton (Kr), dan xenon (Xe) walaupun dalam jumlah yang kecil. Gas mulia di industri diperoleh sebagai hasil samping dalam industri pembuatan gas nitrogen dan gas oksigen dengan proses destilasi udara cair. Pada proses destilasi udara cair, udara kering (bebas uap air) didinginkan sehingga terbentuk udara cair. Pada kolom pemisahan gas argon bercampur dengan banyak gas oksigen dan sedikit gas nitrogen karena titik didih gas argon (-189,4 0C) tidak jauh beda dengan titik didih gas oksigen (-182,8 0C). Untuk menghilangkan gas oksigen dilakukan proses pembakaran secara katalitik dengan gas hidrogen, kemudian dikeringkan untuk menghilangkan air yang terbentuk. Adapun untuk menghilangkan gas nitrogen, dilakukan cara destilasi sehingga dihasilkan gas argon dengan kemurnian 99,999%. Gas neon yang mempunyain titik didih rendah (-245,9 0C) akan terkumpul dalam kubah kondensor sebagai gas yang tidak terkonsentrasi (tidak mencair).

Gas kripton (Tb = -153,2 0C) dan xenon (Tb = -108 0C) mempunyai titik didih yang lebih tinggi dari gas oksigen sehingga akan terkumpul di dalam kolom oksigen cair di dasar kolom destilasi utama. Dengan pengaturan suhu sesuai titik didih, maka masing-masing gas akan terpisah.


6. Kegunaan dan Bahaya Unsur Gas Mulia

Helium
Helium merupakan gas yang ringan dan tidak mudah terbakar. Helium dapat digunakan sebagai pengisi balon udara. Helium cair digunakan sebagai zat pendingin karena memiliki titik uap yang sangat rendah. Helium yang tidak reaktif digunakan sebagai pengganti nitrogen untuk membuat udara buatan untuk penyelaman dasar laut. Para penyelam bekerja pada tekanan tinggi. Jika digunakan campuran nitrogen dan oksigen untuk membuat udara buatan, nitrogen yang terisap mudah terlarut dalam darah dan dapat menimbulkan halusinasi pada penyelam. Oleh para penyelam, keadaan ini disebut “pesona bawah laut”. Ketika penyelam kembali ke permukaan, (tekanan atmosfer) gas nitrogen keluar dari darah dengan cepat. Terbentuknya gelembung gas dalam darah dapat menimbulkan rasa sakit atau kematian.

a. Argon
Argon digunakan dalam las titanium pada pembuatan pesawat terbang atau roket. Argon juga digunakan dalam las stainless steel dan sebagai pengisi bola lampu pijar karena argon tidak bereaksi dengan wolfram (tungsten) yang panas.

b. Neon
Neon dapat digunakan untuk pengisi bola lampu neon. Neon digunakan juga sebagai zat pendingin, indicator tegangan tinggi, penangkal petir, dan untuk pengisi tabung-tabung televisi.


c. Kripton
Kripton bersama argon digunakan sebagai pengisi lampu fluoresen bertekanan rendah. Krypton juga digunakan dalam lampu kilat untuk fotografi kecepatan tinggi.

d. Xenon
Xenon dapat digunakan dalam pembuatan lampu untuk bakterisida (pembunuh bakteri). Xenon juga digunakan dalam pembuatan tabung elektron.

e. Radon
Radon yang bersifat radioaktif digunakan dalam terapi kanker. Namun demikian, jika radon terhisap dalam jumlah banyak, malah akan menimbulkan kanker paru-paru.

Sel Volta


Sel Volta ( Sel Galvani )
Sel elektrokimia di mana reaksi oksidasi-reduksi spontan terjadi dan menghasilkan beda potensial disebut sel galvani. Dalam sel galvani energy kimia diubah menjadi energi listrik. Sel galvani juga sering disebut Sel Volta. Contoh sel galvani adalah baterai.
 

Terkadang perubahan kimia yang terjadi dalam sel galvani dapat dilihat dengan mudah, seperti sel galvani magnesium-tembaga yang ditunjukkan Gambar 1. Karena magnesium lebih mudah teroksidasi daripada tembaga, magnesium melepaskan elektron dan teroksidasi, membentuk ion Mg2+. Potensial anoda magnesium menjadi lebih negatif karena meningkatnya tekanan listrik dari elektron yang lepas. Pada saat yang sama, ion Cu2+ menangkap elektron dari elektroda tembaga dan direduksi ke logam tembaga. Potensial elektroda tembaga menjadi lebih positif karena tekanan listrik turun pada saat elektron dipindahkan dari katoda. Jika kabel dihubungkan pada kedua elektroda, arus mengalir dari elektroda magnesium ke elektroda tembaga, dan voltmeter pada rangkaian luar akan menunjukkan voltase 2,696 V.
Energi yang dilepaskan sel dapat digunakan untuk menyalakan radio dengan menghubungkan kabel dari elektroda ke radio. Reaksi keseluruhan sel tembaga- magnesium ini adalah reaksi redoks.
Mg(s) + Cu2+(aq)Mg2+(aq) + Cu(s)
Apakah fungsi jembatan garam? Ketika setengah reaksi berlanjut, ion- ion magnesium dilepaskan ke larutan pada anoda, dan ion-ion tembaga pindah ke katoda. Ion-ion harus bisa bergerak bebas antara kedua elektroda untuk menetralkan muatan positif (kation Mg2+) yang dihasilkan pada anoda dan muatan negatif (anion) yang tertinggal pada katoda. Larutan ion-ion dalam jembatan garam dapat menetralkan muatan positif dan negatif dalam larutan dan mencegah timbulnya kelebihan muatan pada elektroda. Reaksi redoks yang sama terjadi jika logam magnesium diletakkan langsung dalam larutan tembaga sulfat, dengan reaksi yaitu:
Mg + Cu2+ Mg2+ + Cu.
Akan tetapi, ini bukan sel galvani karena elektron tidak mengalir melalui rangkaian luar. Elektron bergerak langsung dari logam magnesium ke ion-ion tembaga, membentuk logam tembaga. Ini adalah cara membuatlogam tembaga dari ion-ion tembaga, tapi tidak untuk membangkitkan tenaga listrik.

SEL VOLTA DALAM KEHIDUPAN SEHARI - HARI
Meskipun sel galvani dari magnesium dan tembaga dapat bermanfaat, anda tidak akan mau membawanya bila berkemah. Larutannya basah,gelasnya mudah pecah, dan kapasitasnya terbatas. Untungnya para ilmuwantelah mengembangkan baterai yang lebih baik, lebih kecil, lebih ringan, yang mempunyai voltase lebih tinggi dan awet.Bagaimana baterai dirancang? Semakin jauh dua logam semakin besar voltase baterai yang dihasilkan. Jika anda ingin membuat baterai bervoltase tinggi untuk radiomu, anda harus memilih logam yang berjauhan dalam tabel tersebut. Uang logam tembaga dengan paku besi menghasilkan voltase lebih tinggi daripada uang logam dengan nikel karena tembaga lebih jauh dari besi dan dari nikel. Meskipun istilah baterai biasanya mengacu pada sel-sel galvani yang dihubungkan bersama, beberapa baterai hanya mempunyai satu sel. Baterai lain mungkin mempunyai selusin atau lebih. Ketika anda menggunakan baterai untuk menyalakan senter, radio atau CD-player, anda melengkapi rangkaian listrik sel galvani tersebut. Untuk mendapatkan voltase lebih tinggi dari sel dengan beda potensial yang relatif kecil dapat dilakukan dengan menghubungkan sel-sel secara seri.

1. BATERAI KARBON-SENG
Kalau anda memasukkan dua atau lebih baterai dalam senter, artinya anda menghubungkannya secara seri. Baterai harus diletakkan secara benar sehingga memungkinkan elektron mengalir melalui kedua sel. Baterai yang relatif murah ini adalah sel galvani karbon-seng, dan terdapat beberapa jenis, termasuk standard dan alkaline. Jenis ini sering juga disebut sel kering karena tidak terdapat larutan elektrolit, yang menggantikannya adalah pasta semi padat.
Pasta mangan(IV) oksida (MnO2) berfungsi sebagai katoda. Amonium klorida (NH4Cl) dan seng klorida (ZnCl2) berfungsi sebagai elektrolit. Seng pada lapisan luar berfungsi sebagai anoda.
Reaksi yang terjadi :
anoda : Zn Zn2+ + 2 e-
katoda : 2MnO2 + H2O + 2e- Mn2O3 + 2OH-
Dengan menambahkan kedua setengah reaksi akan membentuk reaksi redoks
utama yang terjadi dalam sel kering karbon-seng.
Zn + 2MnO2 + H2O Zn2+ + Mn2O3 + 2OH-
Baterai ini menghasilkan potensial sel sebesar 1,5 volt. baterai ini bias digunakan untuk menyalakan peralatan seperti senter, radio, CD player, mainan, jam dan sebagainya. 



2. BATERAI ALKALI
Baterai alkali hampir sama dengan bateri karbon-seng. Anoda dan katodanya sama dengan baterai karbon-seng, seng sebagai anoda dan MnO2 sebagai katoda. Perbedaannya terletak pada jenis elektrolit yang digunakan. Elektrolit pada baterai alkali adalah KOH atau NaOH. Reaksi yang terjadi adalah:
anoda: Zn + 2 OH- ZnO + H2O + 2e
katoda: 2MnO2 + H2O + 2e-
Mn2O3 + 2OH-
Potensial sel yang dihasilkan baterai alkali 1,54 volt. Arus dan tegangan pada
baterai alkali lebih stabil dibanding baterai karbon-seng.



3. BATERAI NIKEL KADMIUM
Baterai nikel-kadmium merupakan jenis baterai yang dapat diisi ulang seperti aki, baterai HP, dll. Anoda yang digunakan adalah kadmium, katodanya adalah nikel dan elektrolitnya adalah KOH. Reaksi yang terjadi:
anoda : Cd + 2 OH- Cd(OH)2 + 2e
katoda : NiO(OH) + H2O Ni(OH)2 + OH-
Potensial sel yang dihasilkan sebesar 1,4 volt


4. BATERAI PERAK OKSIDA
Bentuk baterai ini kecil seperti kancing baju biasa digunakan untuk baterai arloji, kalkulator, dan alat elektronik lainnya. Anoda yang digunakan adalah seng, katodanya adalah perak oksida dan elektrolitnya adalah KOH. Reaksi yang terjadi:
anoda : Zn Zn2+ + 2 e-
katoda : Ag2O + H2O + 2e 2Ag + 2 OH-
Potensial sel yang dihasilkan sebesar 1,5 volt.

5. AKI
Jenis baterai yang sering digunakan pada mobil adalah baterai 12 volt timbal-asam yang biasa dinamakan Aki. Baterai ini memiliki enam sel 2 volt yang dihubungkan seri. Meskipun lebih besar daripada baterai karbon-seng dan relatif berat, baterai jenis ini tahan lama, menghasilkan arus yang lebih besar, dan dapat diisi ulang. Ketika anda menyalakan mesin, baterai ini yang menyediakan listrik untuk menyalakan mobil. Baterai ini juga menyediakan energi untuk kebutuhan yang tidak dapat dipenuhi oleh alternator mobil, seperti menghidupkan radio atau menyalakan lampu jika mesin mati. Menghidupkan lampu atau radio terlalu lama pada saat mesin mati akan menghabiskan baterai karena mesinlah yang mengisi ulang baterai pada saat mobil berjalan.
Setiap sel galvani dalam baterai timbal-asam mempunyai dua elektroda-satu terbuat dari lempeng timbal (IV) oksida (PbO2) dan yang lain logam timbal, seperti dalam Gambar 6. Dalam tiap sel logam timbal dioksidasi sedangkan timbal(IV) oksida direduksi. Logam timbal dioksidasi menjadi ion Pb2+ dan melepaskan dua elektron di anoda. Pb dalam timbal (IV) oksida mendapatkan dua elektron dan membentuk ion Pb2+ di katoda. Ion Pb2+ bercampur dengan ion SO42- dari asam sulfat membentuk timbal (II) sulfat pada tiap-tiap elektroda. Jadi reaksi yang terjadi ketika baterai timbal-asam digunakan menghasilkan timbal sulfat pada kedua elektroda.
PbO2 + Pb + 2H2SO4 2PbSO4 + 2H2O
Reaksi yang terjadi selama penggunaan baterai timbal-asam bersifat spontan dan tidak memerlukan input energi. Reaksi sebaliknya, mengisi ulang baterai, tidak spontan karena membutuhkan input listrik dari mobil. Arus masuk ke baterai dan menyediakan energi bagi reaksi di mana timbal sulfat dan air diubah menjadi timbal(IV) oksida, logam timbal dan asam sulfat.
2PbSO4 + 2H2O PbO2 + Pb + 2H2SO4
Asam sulfat bersifat korosif. Anda harus berhati-hati jika bekerja di sekitar baterai mobil, dan buanglah secara benar jika sudah benar-benar habis. Baterai ini biasanya dapat digunakan dan diisi ulang berkali-kali.



KESIMPULAN
Sel volta (sel galvani) adalah Sel elektrokimia di mana reaksi oksidasi- reduksi spontan terjadi dan menghasilkan beda potensial. Dalam sel galvani energi kimia diubah menjadi energi listrik Jumlah energi yang dihasilkan tergantung pada dua sifat sel: a) jumlah bahan yang ada dan b)beda potensial antara elektroda- elektrodanya. Unsur-unsur dalam deret volta, semakin kekanan semakin mudah direduksi.
Potensial standart adalah potensial ketika suatu elektroda dihubungkan dengan
elektroda hidrogen. Elektroda hidrogen merupakan elektroda
standart yang
mempunyai potensial 0 volt.
E0sel dinyatakan sebagai potensial standar elektroda reduksi dikurangi potensial
standar elektroda oksidasi.


E0sel = E0reduksi – E0oksidasi
Jika E0 sel bernilai positif maka reaksi sel yang terjadi merupakan reaksi spontan. Sel volta dalam kehidupan sehari-hari: baterai karbon-seng, baterai alkali, baterai nikel cadmium, aki.
E. KESIMPULAN
Sel volta (sel galvani) adalah Sel elektrokimia di mana reaksi oksidasi- reduksi spontan terjadi dan menghasilkan beda potensial. Dalam sel galvani energi kimia diubah menjadi energi listrik Jumlah energi yang dihasilkan tergantung pada dua sifat sel: a) jumlah bahan yang ada dan b)beda potensial antara elektroda- elektrodanya. Unsur-unsur dalam deret volta, semakin kekanan semakin mudah direduksi.
Potensial standart adalah potensial ketika suatu elektroda dihubungkan dengan
elektroda hidrogen. Elektroda hidrogen merupakan elektroda
standart yang
mempunyai potensial 0 volt.
E0sel dinyatakan sebagai potensial standar elektroda reduksi dikurangi potensial
standar elektroda oksidasi.
E0sel = E0reduksi – E0oksidasi
Jika E0 sel bernilai positif maka reaksi sel yang terjadi merupakan reaksi spontan. Sel volta dalam kehidupan sehari-hari: baterai karbon-seng, baterai alkali, baterai nikel cadmium, aki.

Postingan Lama

Total Tayangan Halaman

Mario Onibala. Diberdayakan oleh Blogger.